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Summary 

 

 In a previous White Paper, Ref. 1, we derived the turn dynamics for the Turn 

around a Point maneuver. Here, we employed the concept of the Wind Triangle and 

some geometric arguments. In a companion White Paper, Ref. 2, we derived the turn 

dynamics for the On-Pylon Turn maneuver using the method of Classical Dynamics. In 

this Note, we use the results in Ref. 2 for the general expression for the Centripetal 

acceleration to derive the turn dynamics for the Turn around a Point maneuver. We 

show that both methods give the identical turn dynamics for a Turn around a Point 

maneuver, however, the Classical Dynamics approach is more consistent with the way 

we teach basic aerodynamics for the Private Pilot Program. Expressions annotated in 

red are important takeaways that the reader should comprehend in order to attain a 

better understanding of the Turn around a Point maneuver. 

 

1.0 Classical Dynamics Approach 

In a non-uniform rotating radial-transverse coordinate system (Ref. 2), the 

equation for the vector acceleration a  is given by   

 2 ˆ ˆ) ( 2 )r(r - r r r    i ia =      (1) 

Where r is the radius from the center of the turn, r  and r  are the first and second 

derivatives of the radius with respect to time, and   is the aircraft non-uniform rotation 

rate. Equation (1) provides the resultant acceleration in both the radial ( ˆ
ri ), and 

transverse ( î ) directions. The radial component is called the Centripetal acceleration, 

and the transverse component is the acceleration in the transverse direction. However, 

since the coordinate system is rotating with the aircraft non-uniform rotation rate , the 

transverse acceleration relative to the rotating coordinate system can be shown to be 

identically zero in the case of the aircraft flying at constant TAS. Note that in the case of 

a Turn around a Point, the radius is constant, i.e. the rate of change of r with respect to 

time is identically zero, and thus, both r  and r  are zero. This simplifies the Centripetal 

acceleration term, which now becomes 
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ra r      (2) 

Where  

 
V

r

       (3) 

Here GV V   is the transverse groundspeed around the circle. Note the negative sign in 

eq. (2) indicates that the radial acceleration is directed toward the center of the circle. 

Thus, the final expression for the Centripetal acceleration is given by  
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In the Turn around a Point maneuver, the aircraft develops a wind correction 

angle (WCA) in order to stay on the circle, and thus, the lateral axis of the aircraft is 

crabbed into the wind. If the wind correction angle is denoted by , then the transverse 

groundspeed, VG is given by  

 Cos CosG TAS WV V V      (5) 

Where 0  degrees corresponds to the aircraft on the downwind, and 180  degrees 

corresponds to the aircraft on the upwind. Note that eq. (5) requires the WCA . Since 

the Turn around a Point is flown with a constant radius, the WCA can be determined by 

balancing the radial component of the wind with the radial component of the TAS, i.e. 

VTAS multiplied bySin . This relationship is shown in eq. (6) 

 Sin SinTAS WV V        (6) 

Thus, the WCA is given by  

 1Sin ( Sin )WWCA V          (7) 

Where WV  is defined as the windspeed ratio and is given by W

TAS

V

V
.  If the windspeed ratio

0.5WV  , the wind correction angle  in degrees, can by closely approximated by  

 60 SinWV        (8) 

Note that eqs. (5) and (6) are identical to the solution of the Wind Triangle Problem 

given by eq. (20) in Ref.1, where the symbol   has been replaced by  . 

In order to derive the turn dynamics for the Turn around a Point maneuver, we 

equate the Centrifugal force to the horizontal component of the lift that is directed 

toward the center of the circle. The Centrifugal force (C.F.) is just the mass of the 

aircraft times the magnitude of the Centripetal acceleration, i.e. 
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Where the mass of the aircraft is just the weight of the aircraft divided by the 

acceleration of gravity. Figure 1 shows the horizontal component of lift is given by 

SinL  , where   is the bank angle. However, since the aircraft is crabbed into the wind 

the horizontal component of the lift does not point toward the center of the circle. The 

horizontal component of the lift that is directed toward the center of the circle is just

Sin CosL    which is also depicted in Figure 1. 

 

Figure 1: Horizontal Component of Lift Directed Toward the Center of the Circle 

 

 Since the Turn around a Point maneuver is flown at constant altitude, a balance 

of the vertical forces during the turn gives the following relationship between the lift and 

the weight 

 CosL W       (10) 

Equation (10)  gives the ratio of the lift to the weight during the turn, i.e.  
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Where n is the load factor on the aircraft during the turn. If we now equate the 

Centrifugal force to the horizontal component of the lift that is directed toward the center 

of the circle, we obtain the following equation for the required bank angle  
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Normalizing the groundspeed by the VTAS, i.e. G
G

TAS

V
V

V
  , results in  
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Since the first term in parenthesis on the right hand side of eq.(13) is the required bank 

angle under no wind conditions (i.e. NW ), we can write the above equation as 
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Where the normalized groundspeed GV  is given by  

 Cos CosG WV V       (15) 

Here again, the WCA   is given by  

 1Sin ( Sin )WV         (16)     

Note that on the downwind ( 0  ) and upwind ( 180  ),Sin 0  , and the WCA is 

identically zero. It is clear that the maximum value of the WCA occurs on the crosswind 

(i.e.  90 or 270 degrees), where the magnitude of the WCA is given by 1Sin ( )WV  . 

 An important takeaway from eq. (13) concerns constraining the aircraft’s 

maximum bank angle on the downwind. If one is interested in constraining the bank 

angle on the downwind to a particular maximum value, the value of the radius of the 

circle can be determined for a given value of VTAS. For example, if the maximum 

allowable bank angle on the downwind is to be 45 degrees, Tan =1, and thus, the 

required radius of the circle is given by  
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On the downwind, the WCA is identically zero, and 1G WV V  . Therefore the required 

radius of the circle is given by  
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Note that the no wind radius for a 45 degree banked Turn around a Point maneuver is 

given by  
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Therefore, in order to constrain the maximum bank angle on the downwind to 45 

degrees, the required radius of the turn in the presence of a wind is given by 

 2(1 )NW Wr r V       (20) 

Thus, for a windspeed ratio of 0.2, in order to constrain the bank angle on the downwind 

to no more than 45 degrees, the required radius of the turn will be 1.44 times the no 

wind radius rNW, The information discussed above will aid the Pilot/Instructor in setting 

up the maneuver under any wind condition.   

Finally, since eq. (14) is identical to eq. (46) in Ref. 1, we have shown that both 

methods give the same equation for the turn dynamics of a Turn around a Point 

maneuver. However, the Classical Dynamics method is more consistent with the 

method of teaching basic aerodynamics in the Private Pilot Program. It is important that 

all Pilots and Instructors understand the actual complexity of the variation of the bank 

angle during the Turn around a Point maneuver, which allows the aircraft to maintain a 

constant radius circle around a selected point on the surface (see Ref. 1). 
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