The essence of this Part 61 Training Program is the ability to tailor a flight training program to fit the varying requirements of a particular student, training environment and training aircraft. Additionally it is recognized that flight instructors or Part 61 flight schools many times have differing teaching techniques and different approaches to various aviation subjects that work best for their style of instruction and training location. This Part 61 Training Program is presented in Word Document format so as to make it convenient to modify this document to fit a particular set of needs in order to produce a satisfying student experience and a high student success rate.

Student Name:
Table of Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Part 61 Private Pilot Training Program</td>
</tr>
<tr>
<td>5</td>
<td>Private Pilot Training</td>
</tr>
<tr>
<td>6</td>
<td>Progress Checklist Diagram</td>
</tr>
<tr>
<td>7</td>
<td>Outline of Unit Content and Completion</td>
</tr>
<tr>
<td>12</td>
<td>Pre-Solo CFI Knowledge Test</td>
</tr>
<tr>
<td>16</td>
<td>Pre-Solo Flight Training Certification</td>
</tr>
<tr>
<td>17</td>
<td>Pre-Solo Cross Country Flight Training Certification</td>
</tr>
<tr>
<td>18</td>
<td>U.S. Citizenship Certification</td>
</tr>
<tr>
<td>19</td>
<td>Airspace Diagram</td>
</tr>
<tr>
<td>20</td>
<td>Right-of-Way and Minimum Altitude Diagrams</td>
</tr>
<tr>
<td>21</td>
<td>Discovery Phase Full Stall Landing Profile</td>
</tr>
<tr>
<td>22</td>
<td>Crosswind Component Chart</td>
</tr>
<tr>
<td>23</td>
<td>Temperature-Pressure Altitude-Estimated Density Altitude</td>
</tr>
<tr>
<td>24</td>
<td>Private Pilot Practical Test Review</td>
</tr>
<tr>
<td>25</td>
<td>WINGS - Pilot Proficiency Program</td>
</tr>
<tr>
<td></td>
<td>Generic Aircraft Check List</td>
</tr>
<tr>
<td></td>
<td>Cross-Country Planning Documents</td>
</tr>
</tbody>
</table>
Part 61 Private Pilot Training Program

The goal in providing a Part 61 Private Pilot Training Program is to:

1) Develop a safe FAA Certified Private Pilot,
2) In a time period commensurate with the amount of time the student has to devote to the training,
3) At the lowest reasonable cost, and
4) Poised to continue a lifetime of learning.

During any aviation training program certain challenges are present. Inclement weather, unforeseen maintenance issues with aircraft, availability of flight instructors and varying student availability and progress are some of these challenges. The students of the Part 61 Private Pilot Training Program are part-time students and as a result these challenges are sometimes increased. Thus:

The purpose of this Private Pilot Training workbook is to:

1) Provide the student with a guide describing the content of the training and, as best as possible, the sequence of that training, and
2) Provide the student’s flight instructor (or flight instructors) with a comprehensive record of the specific training the student has received so as to avoid unnecessary duplication of training.

Your flight instructor assumes a great deal of responsibility for your training. His or her decisions will shape your aviation future and will hopefully inspire you for a lifetime of accomplishments. We hope you enjoy the training you receive. If there is any question you have about your flying experience, please feel free to discuss it with your flight instructor at any time.

The student will keep this workbook with his or her log book and may make notes in it as necessary. The flight instructor will make the entries in this workbook as the student progresses through the program.

Things you will need to do:

1) Present your driver’s license and your birth certificate or your passport to your flight instructor,

2) Make an appointment for an FAA Third Class Medical examination with an FAA certified Aviation Medical Examiner (Your flight instructor will provide a list of Aviation Medical Examiners)
Things you will need to get:

Headset
Aviation Sectional Chart
Airport/Facility Directory
Pilot’s Operating Handbook for the training aircraft (POH)
Log Book
Federal Aviation Regulations (FARs – 14CFR)
Aeronautical Information Manual (AIM) with Pilot/Controller Glossary
Private Pilot Practical Test Standards for Single-Engine Land Airplanes
Knowledge test study materials (i.e. Books, Audio Tapes, Video Tapes, DVDs)
Flight Planning Plotter
Flight Computer

In the first few flight sessions your Flight Instructor will do the following:

1) □ Explain this Private Pilot Training workbook
2) □ Explain the necessity of a FAA Medical Certificate
3) □ Explain renter insurance
4) □ Ask you to complete at home the open book Pre-Solo CFI Knowledge Test included in this workbook. And set a proposed completion date for this open book test.

The date of completion of the Pre-Solo CFI Knowledge Test shall be __________________

5) □ Sign you up for the AOPA Flight Training Magazine
6) □ Explain suitable training weather at the training airport and the ASOS telephone number
7) □ Certify that you are a U.S. Citizen in your Log Book
8) □ Explain the necessary FAA Knowledge Test preparation and set the proposed completion date for the FAA Knowledge Test.

The date of completion of the FAA Knowledge Test shall be __________________

Useful Web Sites

Federal Aviation Agency (FAA) http://www.faa.gov/
Federal Aviation Agency Safety Web-site http://www.faasafety.gov/
Aircraft Owners and Pilot’s Association (AOPA) http://www.aopa.org/
National Oceanic Atmospheric Administration (NOAA)
National Weather Service (NWS) http://aviationweather.gov/
Sporty’s Pilot Shop Practice Knowledge Tests http://www.sportys.com/faatest/
Aircraft Checklists http://www.freechecklists.net/
Experimental Aircraft Association (EAA) http://www.eaa.org/
The Private Pilot Training

The basis of the Private Pilot Training Program is the Progress Checklist which follows in this workbook. As the student progresses through the training program, the instructor will check off the various units started and completed allowing for a quick reference as to where the student stands in his or her training.

The student will progress through the Discovery Phase then the Preparation Phase at the end of which the student will be ready to take the FAA Practical Test with an FAA Examiner and earn a FAA Private Pilot Certificate.

Each phase of the training program is made up of several “Units of Instruction.” Some of these units are mandatory for the phase; others are Discretionary as depicted on the Progress Checklist. The instructor will make the decision as to whether Discretionary units of Instruction will be addressed in the Discovery Phase or in the Preparation Phase. All units shall be completed.

In the Discovery Phase the student will be expected to complete each unit and demonstrate it to an acceptable degree of safe operation. In the Preparation Phase the student will be expected to complete each unit and demonstrate it to Practical Test Standards (PTS); i.e. to the standards expected by an FAA Examiner.

The Progress Checklist is supplemented by a more detailed description of the content of each unit of Instruction. This detailed description of unit content is described in the Outline of Unit Content and Completion. In this outline each unit is composed of Flight Maneuvers and Ground Discussions and may take only one lesson to complete. However many of the units may take several lessons to complete satisfactorily. The flight instructor will be the judge as to the completion of each unit to the required standard.

Key to the training program is that the completion of a particular unit of instruction is not necessary to the commencement of another unit of instruction. Your Flight Instructor will make the decision as to the content of each lesson and from which unit of instruction the lesson will be based.

Each lesson will be preceded and concluded by a ground discussion of varying length. Some may be quite lengthy; others may be only a few minutes. At the end of each lesson the flight instructor will discuss with the student the next lesson and a "next lesson plan" will be assigned.

There are sure to be occasions where following the "next lesson plan" may not be possible for various reasons. When these occasions occur it will be the responsibility of the student to have such a working knowledge of the entire training program so as to be able to absorb unplanned material.
Although the above depicted Progress Checklist can be interpreted to imply that solo is expected half way through the training program, many times and for many reasons, your flight instructor may not schedule your first solo flight until late in your training.
Outline of Unit Content and Completion

1. Basic Flight

a. Flight Maneuvers

<table>
<thead>
<tr>
<th>Manoeuvre</th>
<th>Needs Work</th>
<th>Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Checklists and their use</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2) Taxiing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3) Run-up’s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4) Straight and Level Flight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5) Coordinated Cruising Turns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6) Dutch Rolls for Coordination (Optional)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7) Climbs and Descents With Turns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8) Climbing and Descending Turns With Flaps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9) Airspeed Control on Landings</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b. Ground Discussion

<table>
<thead>
<tr>
<th>Discussion</th>
<th>Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Air Traffic Control Communications</td>
<td></td>
</tr>
<tr>
<td>2) Preflight Walk Around Preparation</td>
<td></td>
</tr>
<tr>
<td>3) Aerodynamics of Lift</td>
<td></td>
</tr>
<tr>
<td>4) Aerodynamics of Turns</td>
<td></td>
</tr>
<tr>
<td>5) Rudder Use</td>
<td></td>
</tr>
<tr>
<td>6) Aircraft Systems</td>
<td></td>
</tr>
<tr>
<td>7) Equipment Malfunction Including Radio Failure</td>
<td></td>
</tr>
<tr>
<td>8) Aircraft Powerplants</td>
<td></td>
</tr>
<tr>
<td>9) Airport Operations</td>
<td></td>
</tr>
</tbody>
</table>

Practice Area Maneuvers

c. High-Flight Maneuvers Performance Maneuvers (Above 3,500 ft AGL)

<table>
<thead>
<tr>
<th>Maneuver</th>
<th>Needs Work</th>
<th>Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Slow Flight With and Without Flaps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2) Steep Turns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3) Power-Off Stalls-Approach Stalls-Recovery at First Indication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>at Full Stall and With Banks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4) Power-On Stalls-Departure Stalls-Recovery at First Indication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>at Full Stall and With Banks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5) Emergencies</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

d. Low-Flight Maneuvers Ground Reference Maneuvers (At 1000 ft AGL)

<table>
<thead>
<tr>
<th>Maneuver</th>
<th>Needs Work</th>
<th>Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Rectangular Patterns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2) Turns Around a Point</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3) "S" Turns over a road or power line</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

e. Ground Discussion

<table>
<thead>
<tr>
<th>Discussion</th>
<th>Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Pre-flight Weather Planning and NOTAMS, TFRs</td>
<td></td>
</tr>
<tr>
<td>2) Wind and Its effects (Crab Angle)</td>
<td></td>
</tr>
<tr>
<td>3) Aerodynamics of Stalls</td>
<td></td>
</tr>
<tr>
<td>4) VFR Flight and Flight Following</td>
<td></td>
</tr>
</tbody>
</table>
5) Collision Avoidance, Wind Shear Avoidance and Wake Turbulence

2. Takeoffs and Landings
 a. Takeoffs
 1) Normal Takeoffs
 2) Specialty Takeoffs
 A) Short Field Takeoffs
 B) Soft Field Takeoffs
 □ Needs Work □ Completed
 b. Landings
 1) Normal Landings
 2) Specialty Landings
 A) Short Field Landings
 B) Soft Field Landings
 □ Needs Work □ Completed
 c. Lining up with the runway
 □ Needs Work □ Completed
 d. Slips to a Landing and Slips to lose altitude
 □ Needs Work □ Completed
 e. Introduction to Cross-Wind Takeoffs and Landings
 □ Needs Work □ Completed
 f. Drag the Runway
 g. Go Arounds
 □ Needs Work □ Completed
 h. Ground Discussions
 1) Traffic Patterns With Entries and Departures
 □ Completed
 2) Approaches
 □ Completed
 3) Flares
 □ Completed
 4) Burn-Offs (see Landing Diagram page 21)
 □ Completed
 5) Touch Downs
 □ Completed
 6) Takeoff and Landing Performance Charts
 □ Completed
 7) Effects of Wind; Use of crosswind component charts
 □ Completed

3. Dual Practice
 a. Flight Maneuvers
 1) Best Rate Vy and Best Angle Vx Climbs
 □ Needs Work □ Completed
 2) Review of Introduced Maneuvers
 □ Needs Work □ Completed
 b. Ground Discussions
 1) Estimating Visibility in Flight
 □ Completed
 2) Lost Procedures
 □ Completed
 3) Loss of Radio Communications
 □ Completed
 4) Emergencies
 □ Completed
 5) Pilot-in-Command Attitude
 □ Completed

4. Cross-Wind Takeoffs and Landings
 a. Cross-Wind Takeoffs
 1) Ground Roll
 □ Needs Work □ Completed
 2) Climb Out Crab
 □ Needs Work □ Completed
 b. Cross-Wind Landings
 1) Wing Low Final Approach
 □ Needs Work □ Completed
2) Wing Low Touch Down □ Needs Work □ Completed
3) Go Arounds □ Needs Work □ Completed
4) Ground Roll □ Needs Work □ Completed

c. Ground Discussions
1) Wind Speed and Intensity □ Completed
2) Wind Changes in Pattern □ Completed
3) Wing Low Touch Down vs. Rudder Kick Methods □ Completed
4) Discussions of higher speed aircraft □ Completed

5. Satellite Training Airport Operations
a. Flight Maneuvers
1) Pattern Entries Right and Left □ Needs Work □ Completed
2) Radio Communications □ Needs Work □ Completed
3) Short and Soft Field Operations □ Needs Work □ Completed
b. Ground Discussions
1) Airspaces □ Completed
2) Standard and Non Standard Patterns □ Completed
3) Fly Over Inspections □ Completed
4) Taxi-back Operations □ Completed
5) Low Level Wind Changes □ Completed

6. Night Flight
a. Flight Maneuvers
2) Full Stop Landings □ Needs Work □ Completed
3) Landing Light out Operation □ Needs Work □ Completed
b. Ground Discussions
1) Optical Illusions □ Completed
2) Walk-around Inspections at night □ Completed
3) Cockpit Lighting □ Completed
4) Aircraft Lighting and Electrical Systems □ Completed

7. Radio Navigation
a. Flight Maneuvers
1) Use of VOR Radios □ Needs Work □ Completed
2) Use of GPS “Direct To” Function □ Needs Work □ Completed
3) ASR Approach □ Needs Work □ Completed
b. Ground Discussions
1) ATC Help Available □ Completed
2) VOR Theory □ Completed
3) GPS Theory □ Completed

8. Emergencies
a. Flight Maneuvers
Part 61 Private Pilot Training

1) Before climb out
2) On Climb out
3) En-route

b. Ground Discussions
1) Aircraft systems
2) Checklist use
3) Emergencies from power application to cruise
4) Off airport precautionary landings

9. Instrument Flight
a. Flight Maneuvers
1) Basic Hooded Turns
2) Basic Hooded Climbs and Descents
3) Hooded 180° Weather Turns
4) Hooded Unusual Attitudes
5) IFR Flight Opportunity

b. Ground Discussions
1) Instrument Flight Rules
2) IFR Clearances
3) Instrument Scans
4) Dead Man’s Spiral (Steep descending spiral)

10. Dual Cross-Country
a. Flight Maneuvers
1) Into Towered Airports
2) Into Non-Towered Airports
3) File VFR Flight Plan
4) VOR Deviation to Alternate Airport

b. Ground Discussions
1) Use of Compass
2) Use of Charts and A/F Directory
3) Pilotage, Dead Reckoning and Flight Planning
4) Lost Procedures
5) METARS and Forecasts
6) Weather Briefings and NOTAM Briefings
7) Critical Weather Situations
8) Hazardous Terrain Features
9) Web Weather, AOPA and other Web Sites
10) Loss of Radio Communications

11. Solo Practice
a. Flight Maneuvers
1) Review Introduced Maneuvers

b. Ground Discussions
1) Discuss Solo Limitations
2) 1,000 ft AGL Minimum-Ground Reference Maneuvers □ Completed
3) 3,500 ft AGL Minimum Performance Maneuvers □ Completed
4) Lost Procedures □ Completed
5) Loss of Radio Communications □ Completed

12. Solo Cross-Country
 a. Flight Maneuvers
 1) Flight Preparation □ Needs Work □ Completed
 b. Ground Discussions
 1) Emergencies □ Completed
 2) Loss of communications □ Completed
 3) 121.9 MHz - 7700 and 7600 Transponder Codes □ Completed

13. Dual Practical Test Preparation
 a. Flight Maneuvers
 1) Review All PTS Maneuvers □ Needs Work □ Completed
 2) Practice Practical Test □ Needs Work □ Completed
 b. Ground Discussions
 1) Review in detail the PTS □ Completed
 2) Review of Aircraft Maintenance Records □ Completed
 3) Practical Test Realities □ Completed
Pre-Solo CFI Knowledge Test

Airplane make/model: __

You will need:
Federal Aviation Regulations (FAR’s)
Aeronautical Information Manual (AIM) with Pilot/Controller Glossary
Aviation Sectional Chart
Private Pilot Practical Test Standards for Single-Engine Land Airplanes
Airport/Facility Directory
Pilot’s Operating Handbook for the airplane in which you are training (POH)

1. Who is ultimately responsible for the operation of an aircraft and what does that responsibility entail? FAR 91.3 and FAR 1.1 (Pilot-in-Command)

2. What personal documents must a Student Pilot carry when flying cross country? FAR 61.51 (i)(2)

3. What must a student pilot have on his/her Student Pilot Certificate and in his/her logbook in order to solo an airplane? FAR 61.93 (c)

4. What is a cross country flight? FAR 61.1 (b)(3) (i) and FAR 61.1 (b)(3) (ii)

5. What must a student pilot have on his/her student pilot certificate and in his/her logbook in order to solo an airplane on cross country flight of more than 50 nm from the training airport for the first time? FAR 61.93 (c)(1) and (2)(i)

6. What must a student pilot have in his/her logbook in order to solo an airplane on repeated cross country flights of less than 50 nm from the training airport? FAR 61.93 (b)(2)

7. What must a student pilot have in his/her logbook in order to solo an airplane doing touch and go takeoff and landing practice at an airport within 25 nm from the training airport? FAR 61.93 (b)(1)

8. What must a student pilot have in his/her logbook in order to solo an airplane on all cross country flights of more than 50 nm from the training airport? FAR 61.93 (c)(2)(ii)

9. What are the limitations for a student pilot carrying passengers? FAR 61.89

10. You may not fly an airplane within ______ hours after the consumption of an alcoholic beverage or with ___ % by weight or more of alcohol in your blood. FAR 91.17

11. What airplane documents must be onboard the airplane for every flight? FAR 91.9 and FAR 91.203

12. Explain preflight action requirements necessary before flying an airplane. FAR 91.7 and FAR 91.103

13. Are you allowed to fly in Restricted Airspace? Are you allowed to fly in Prohibited Airspace? FAR 91.133 and AIM 3-4-2 and 3

14. How are Restricted and Prohibited airspace depicted a Sectional Chart? See the legend of any Sectional Chart

15. Are all Restricted and Prohibited airspace depicted on Sectional Charts? FAR 91.139
16. If you have concern over the safety of a proposed flight path, where can you go for help? AIM 4-1-3 and AIM 5-1-3

17. What are the day-Visual Flight Rule (VFR) fuel requirements? FAR 91.151

18. Explain the use of safety belts and shoulder harnesses for crew members? FAR 91.105

19. Explain the use of safety belts and shoulder harnesses for passengers? FAR 91.107 (a)(3)

20. What are the basic Visual Flight Rule (VFR) weather minimums? FAR 91.155

21. For a student pilot are there more restrictive visibility requirements than basic VFR visibility minimums? FAR 61.89

22. For a student pilot are there more restrictive flight-above-cloud requirements than basic VFR visibility and cloud separation requirements? FAR 61.89

23. What are the minimum safe altitudes for the operation of an airplane? FAR 91.119

24. When two airplanes are approaching at right angles to each other at the same altitude what action should each take? FAR 91.113 (d)

25. When practicing performance maneuvers such as steep turns, slow flight, power-on or power-off stalls you should do so at an altitude of at least ___________? Practical Test Standards V (A) Steep Turns (2), V (A) Maneuvering During Slow Flight (2), V (B) Power-Off Stalls (2), and V (C) Power-On Stalls (2)

26. List the meaning of the following ATC light gun signals: FAR 91.125

<table>
<thead>
<tr>
<th>Light Gun Signals</th>
<th>IN FLIGHT</th>
<th>ON GROUND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steady Green</td>
<td>___________________________</td>
<td>______________________</td>
</tr>
<tr>
<td>Flashing Green</td>
<td>___________________________</td>
<td>______________________</td>
</tr>
<tr>
<td>Steady Red</td>
<td>___________________________</td>
<td>______________________</td>
</tr>
<tr>
<td>Flashing Red</td>
<td>___________________________</td>
<td>______________________</td>
</tr>
<tr>
<td>Flashing White</td>
<td>___________________________</td>
<td>______________________</td>
</tr>
<tr>
<td>Alternating Red & Green</td>
<td>___________________________</td>
<td>______________________</td>
</tr>
</tbody>
</table>

27. What is the difference between a towered and a non-towered airport and is the training airport a towered or a non-towered airport? Pilot/Controller Glossary See-TOWER, AIM 4-3-2 (a) and AIM 4-1-9 (a) through (c)

28. Explain the procedures you would use to land at the training airport if your communication radios failed in flight? FAR 91.185 (b), AIM 6-4-1 and 6-4-2

29. Draw the runway configuration and the major taxiway configuration of the training airport. See Airport/Facility Directory

30. What are the normal traffic patterns and traffic pattern altitudes around the training airport? Airport/Facility Directory - and AIM 4-3-4 (including FIGs 4-3-2 and 4-3-3)
32. What are the following radio frequencies at the training airport? Airport/Facility Directory

<table>
<thead>
<tr>
<th>Service</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATIS</td>
<td>__________</td>
</tr>
<tr>
<td>Ground Control</td>
<td>__________</td>
</tr>
<tr>
<td>Tower</td>
<td>__________</td>
</tr>
<tr>
<td>Approach Control</td>
<td>__________</td>
</tr>
<tr>
<td>Departure Control</td>
<td>__________</td>
</tr>
<tr>
<td>Common Traffic Advisory</td>
<td>__________</td>
</tr>
<tr>
<td>Frequency (CTAF)</td>
<td>__________</td>
</tr>
<tr>
<td>UNICOM</td>
<td>__________</td>
</tr>
<tr>
<td>Flight Service Station (FSS)</td>
<td>__________</td>
</tr>
</tbody>
</table>

33. List the airspeeds and their definitions for your training airplane: FAR 1.2 and POH Section 2

<table>
<thead>
<tr>
<th>Airspeed</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS0</td>
<td>____________________________</td>
</tr>
<tr>
<td>VS1</td>
<td>____________________________</td>
</tr>
<tr>
<td>VR</td>
<td>____________________________</td>
</tr>
<tr>
<td>VX</td>
<td>____________________________</td>
</tr>
<tr>
<td>VY</td>
<td>____________________________</td>
</tr>
<tr>
<td>VFE</td>
<td>____________________________</td>
</tr>
<tr>
<td>VA</td>
<td>____________________________</td>
</tr>
<tr>
<td>VNO</td>
<td>____________________________</td>
</tr>
<tr>
<td>VNE</td>
<td>____________________________</td>
</tr>
</tbody>
</table>

34. What is the maximum ramp (gross) weight for your training airplane? POH Section 2

35. What is the maximum takeoff weight for your training airplane? POH Section 2

36. What is the maximum fuel capacity for your training airplane and how much of that capacity is usable? POH Section 2

37. What is the minimum and maximum oil capacity of your training airplane? POH Section 2

38. What is the best glide speed for your training airplane? POH Section 2 and Section 3-2 and 3-11

39. When is carburetor heat recommended in your training airplane? POH Section 4 Descent, Approach and Landing and Archer POH Section 3.28 and Cessna POH Page 3.16

40. Explain the recommended use of flaps for the normal landing of your training airplane? Archer POH Section 4.29 and Cessna POH Page 4.31

41. Explain the procedures you would follow if the engine failed in your training airplane immediately after takeoff? Archer POH Section 3.9 and Cessna POH Page 3.11

42. Explain the procedures you would follow if the engine failed in your training airplane on takeoff after crossing the end of the runway and before you reached 400 feet? Archer POH Section 3.11 and Cessna POH Page 3.11

43. Explain the procedures you would follow if the engine failed in your training airplane at 3,500 feet AGL while you are flying over sparsely populated terrain? Archer POH Section 3.11 and Cessna POH Page 3.11
44. Compute the location of the center of gravity (CG) for a solo flight with full fuel in the training airplane. Is the CG within acceptable limits? POH Section 6

45. What is the takeoff roll and the takeoff distance over a 50-ft. obstacle for your training airplane at the training airport at 2,400 # gross weight, a temperature of 20° centigrade, a 5-knot head wind, when the altimeter reads 2,000 ft with a Kollsman window setting of 29.92 inches of mercury? POH Section 5

46. What is the ground roll and total landing distance over a 50-ft. obstacle for your training airplane at the training airport with a 2,100 # gross weight, a temperature of 25° centigrade, calm wind, when the altimeter reads 3,500 ft with a Kollsman window setting of 29.92 inches of mercury? POH Section 5

Date Reviewed: ____________________

______________________________ ______________________________

CFI Student
Pre-Solo Flight Training Certification-FAR 61.87 (d)

1) □ Proper flight preparation procedures, including preflight planning and preparation, powerplant operation, and aircraft systems;
2) □ Taxiing or surface operation, including run-ups;
3) □ Takeoffs and landings, including normal and cross wind;
4) □ Straight and level flight, including turns in both directions;
5) □ Climbs and climbing turns;
6) □ Airport traffic patterns, including entry and departure procedures;
7) □ Collision avoidance, wind shear avoidance, and wake turbulence;
8) □ Decent, with and without turns, using high and low drag configurations;
9) □ Flight at various airspeeds from cruise to slow flight;
10) □ Stalls from various flight attitudes and power combinations with recovery initiated at first indication of a stall, and recovery from a full stall;
11) □ Emergency procedures and equipment malfunctions;
12) □ Ground reference maneuvers;
13) □ Approach to a landing area with simulated engine malfunction;
14) □ Slips to a landing; and
15) □ Go-Arounds.

I hereby certify that my flight instructor and I have reviewed and practiced the subjects and procedures above checked and that I am comfortable with my knowledge and flight competence in those areas.

Date: ____________________

__ __________________________
CFI Student
Pre-Solo Cross-Country Training Certification-FAR 61.93 (e)

1) □ Use of aeronautical charts for VFR navigation using pilotage and dead reckoning with the aid of a magnetic compass;
2) □ Use of performance charts pertaining to cross-country flight;
3) □ Procurement and analysis of aeronautical weather reports and forecasts, including recognition of critical weather situations and estimating visibility while in flight;
4) □ Emergency Procedures;
5) □ Traffic pattern procedures that include area departure, area arrival, entry into the traffic pattern, and approach;
6) □ Procedures and operation procedures for collision avoidance, wake turbulence precautions, and wind shear avoidance;
7) □ Recognition, avoidance, and operational restrictions of hazardous terrain features in the geographical area where the cross-country flight will be flown;
8) □ Procedures for operating the instruments and equipment installed in the aircraft to be flown, including recognition and use of the proper operational procedures and indications;
9) □ Use of radios for VFR navigation and two-way communications;
10) □ Takeoff, approach, and landing procedures, including short-field, soft-field and cross-wind takeoffs, approaches, and landings;
11) □ Clims at best angle and best rate;
12) □ Control and maneuvering solely by reference to flight instruments, including straight and level flight, turns, descents, climbs, use of radio aids, and ATC directives.

I hereby certify that my flight instructor and I have reviewed and practiced the subjects and procedures above checked and that I am comfortable with my knowledge and flight competence in those areas.

Date: ____________________

___ ______________________
CFI Student
Pre-Training US Citizen Certification-(a) a sport pilot, recreational pilot, or private pilot rating; (b) a multiengine rating; or (c) an instrument rating

_________________, holder of Pilot Certificate #_________________ has presented to me Florida Driver’s License #________________ and a certificated US birth certificate from the State of _______________ County of _______________ being #_______________ establishing US citizenship in accordance with 49 CFR 1552.3(h).

Date: Signed: _____________________
[____________________]
[____________________]
CFI Certificate #: ___________________
Expiration Date: ______________
Airspace

Class A

60,000 MSL to 18,000 MSL

- Above FL 240 DME Required
- Above FL 12,500 MSL Oxygen Required FAR 91.211

<table>
<thead>
<tr>
<th>Features</th>
<th>Class A</th>
<th>Class B</th>
<th>Class C</th>
<th>Class D</th>
<th>Class E</th>
<th>Class G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry Prerequisites</td>
<td>ATC Clearance</td>
<td>ATC Clearance</td>
<td>IFR, Clearance</td>
<td>VFR, Radio Contact</td>
<td>IFR, Clearance</td>
<td>VFR, Radio Contact</td>
</tr>
<tr>
<td>Required Pilot Certificate or Rating</td>
<td>Instrument Rating</td>
<td>Private Certificate or Student with Endorsement</td>
<td>Student Certificate</td>
<td>Student Certificate</td>
<td>Student Certificate</td>
<td>Student Certificate</td>
</tr>
<tr>
<td>Two-Way Radio Communication</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>IFR Only</td>
<td>No</td>
</tr>
<tr>
<td>Mode C Required</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>IFR Only</td>
<td>IFR Only</td>
<td>No</td>
</tr>
<tr>
<td>VFR Minimum Visibility Below 10,000 MSL</td>
<td>N/A</td>
<td>3 Miles</td>
<td>3 Miles</td>
<td>3 Miles</td>
<td>Day: 1 Mile</td>
<td>Night: 3 Miles</td>
</tr>
<tr>
<td>VFR Minimum Visibility 10,000 MSL and Above</td>
<td>N/A</td>
<td>3 Miles</td>
<td>3 Miles</td>
<td>5 Miles</td>
<td>5 Miles **</td>
<td></td>
</tr>
<tr>
<td>VFR Cloud Clearance Below 10,000 MSL ***</td>
<td>N/A</td>
<td>Clear of Clouds</td>
<td>500 below 1,000 above 2,000 horizontal</td>
<td>500 below 1,000 above 2,000 horizontal</td>
<td>500 below 1,000 above 2,000 horizontal</td>
<td>500 below ** 1,000 above 2,000 horizontal</td>
</tr>
<tr>
<td>VFR Cloud Clearance 10,000 MSL and Above ***</td>
<td>N/A</td>
<td>Clear of Clouds</td>
<td>500 below 1,000 above 2,000 horizontal</td>
<td>500 below 1,000 above 2,000 horizontal</td>
<td>1,000 below 1,000 above 1 Mile horizontal</td>
<td>1,000 below ** 1,000 above 1 Mile horizontal</td>
</tr>
</tbody>
</table>

* Student Pilot operations at some Class B airports are prohibited.
** When flying 1,200 AGL or below: Day 1-mile visibility and clear of clouds, Night 3 miles visibility and 500 below, 1,000 above and 2,000 horizontal of clouds
*** Ceilings Required under Controlled Airspace-More than 1,000 foot Ceilings

Minimum Altitudes:
- Congested Areas- 1,000 ft above highest obstacle within 2,000 horizontal feet
- Non-Congested Areas- No Closer than 500 feet
Right-of-Way and Minimum Altitude Diagrams

Converging Right-of-Way Rules
FAR 91.113 (d)

Has Right of Way

Minimum Safe Altitudes-FAR 91.119

Assembly or Congested Area

Non-Congested Area

Water or Sparsely Populated Area

1000 ft

2000 ft

500 ft

500 ft

1000 ft
Full Stall Landing Profile

Setup Abreast of Target Point:
1) Power 1700 RPM
2) Hold Altitude to White Arc
3) 1 Notch of Flaps
4) Slow to 75 kts & descend

Judgment Calls After Setup:
1) Additional Flap Extensions
2) Power Reductions
3) Initiating Turns
GOAL Touch Down at Target Point

Touch Down
at full stall
less than 40 kts

Runway

Approach
75 kts

Flair
20 feet

Burn Off
the 20 feet while
slowing to stall speed

Base Turn

Final Turn

Keep 75 kts to Flair

20 feet
Crosswind Component Chart

EXAMPLE: 40 knot wind at 30° angle.
A 30° angle between wind and runway.
B 40 knots total wind velocity.
C 35 knot headwind component.
D 20 knot crosswind component.
Temperature- Pressure Altitude-Estimated Density Altitude

Estimated because this calculation does not account for Humidity (Water Content)
Private Pilot Practical Test Review

Dutch Rolls

Clearing Turns
Climb out Turns
Straight and Level
Steep Turns
Slow Flight Constant Altitude
Descent
Climb
Stalls (Wings Level & Bank)
Power-off (Approach)
Power-on (Departure)
Hood Turns (360°)
Unusual Attitudes
VOR Tracking
Arrival Descent
Emergency
S-Turns
Turns Around A Point
Normal Landing (X-Wind)
Go Aroun
ds
Slips to a Landing
Soft Field Landing
Short Field Landing
Review PTS/Task Failure
WINGS - Pilot Proficiency Program

The WINGS - Pilot Proficiency Program is based on the premise that pilots who maintain currency and proficiency in the basics of flight will enjoy a safer and more stress-free flying experience. The program consists of the establishment of minimum training requirements in the form of 1) ground training (knowledge) and 2) flight maneuvers from the appropriate FAA Practical Test Standards for various classes and categories of aircraft.

The Pilot Proficiency Program is administered on-line at www.FAASafety.gov. You must “sign-up” and get the required ID and password.

The program is designed to encourage an on-going training program that will allow a pilot to fly on a regular basis with an authorized flight instructor. The program is most effective if the training is accomplished regularly throughout the year thus affording a pilot the opportunity to fly in different seasons and in different flight conditions. There are three phases (or levels) of the program designed to allow for flexibility in obtaining the level of proficiency a pilot wishes to maintain: Basic, Advanced and Master.

a. Basic Level. This phase level is designed for those pilots who want to establish a recurrent training program that will provide them a higher level of proficiency than merely preparing for a normal Flight Review every two years.

Each pilot must complete three knowledge credits of instruction and complete three credits of flight instruction at the Basic phase level using the Private Pilot Practical Test Standards. A listing of course material, subject matter, FAASTeam seminars, activities, flight requirements, and credit values can be found by going to your “My WINGS” page when you are registered on FAASafety.gov. This list may change periodically, reflecting the dynamic nature of aircraft accident causal factors and FAASTeam emphasis areas.

b. Advanced Level. This level is designed for those pilots who want to design a program that will take them a step above the Basic level. To participate at the Advanced level, each pilot must participate at the Basic level and requires an additional three credits of knowledge instruction and an additional three credits of flight instruction using the Commercial Practical Test Standards. Again course materials and flight requirements can be found at FAASafety.gov.

c. Master Level. This level is designed to give even more flexibility to a pilot’s need for specialized training. While most often this level will require the use of higher Practical Test Standards it will also allow for the addition of specialized equipment. To participate at the Master level, each pilot must participate at the Advanced level and requires an additional three credits of knowledge instruction and an additional three credits of flight instruction using the ATP Practical Test Standards. Once again course materials and flight requirements can be found at FAASafety.gov.

WINGS - Pilot Proficiency Program - Incentives for Participation

The most significant incentive to participating pilots is the added level of safety and professionalism that is obtained through adoption of a consistent recurrent training program.

Pilots participating in the WINGS - Pilot Proficiency Program to at least the Basic Phase need not accomplish an otherwise required Flight Review by authorized flight instructor every two years.

Additionally Industry participants in the WINGS - Pilot Proficiency Program may provide incentives for participating pilots in the form of reduced charges for insurance and the like.
Generic Aircraft Checklist – Always Check Your Aircraft’s POH

INITIAL
- WX & Den Altitude
- Weight & Balance
- Flight Plan-File
- Papers-A.R.O.W.
- Flaps-Extend
- Master/Alt-ON
- Fuel Gauges-True
- Pitot Heat-Test
- Stall Indicator-Test
- All Lights-Test
- Master-OFF

Walk Around
- Fuel Quantity
- Fuel Quality
- Caps/Drains/Vents
- Engine/Oil/Belt
- Prop/Intake
- Exhaust System
- Surfaces & Controls
- Pitot Static Ports
- Gear/Tire/Breaks
- Antennas
- Tires/Chocks
- Baggage Door
- Final Look

INTERIOR
- Seat Belts
- Seat track/back-Lock
- Headsets hook up
- Put Key in Ignition
- Flaps-UP
- Passenger Brief
- Hobbs/Tach Time
- Fuel-Proper Tank
- Circuit Breakers
- Alternate Static
- ELT-Armed
- Breaks-Pedal Test

START
- Brakes-Set
- Radio Master-OFF
- Carb Heat-OFF
- Strobe Lights-ON
- Master/Alt-ON
- Mixture-Full Rich
- Prime-As Req
- Fuel Pump-?
- Throttle-Slight
- Prop-Clear

Pre-Takeoff
- Taxi
- Run Up
- Altitude Indicator-OK
- Flight Controls-Free
- Annunciator Lights
- Instruments-Check
- Mixture-Best Power
- 1500 to 2000 RPM
- Mags L&R-Check
- Carb Heat-Check
- Vacuum-Check
- Alt Vacuum-Check
- Amps/Volts-Check
- Fuel Pressure-Check
- Oil Pressure-Check
- Oil Temp-Check
- Idle-Check
- Friction Lock-Check

CRUISE CLIMB
- Power-Maximum
- Cruise Climb Airspd
- Fuel Pump-As Req
- Land Light-As Req
- Mixture-As Req
- Instruments-Check
- Flight Plan-Open

CRUISE
- Power-As Req/POH
- Fuel Pump-As Req
- Fuel Pump for Switch

Descent
- ATIS/SWOS
- Mixture-As Req
- Carb Heat-As Req
- Fuel-Proper Tank
- Fuel Pump for Switch

PRE-LANDING
- Landing Light-ON
- Carb Heat-As Req
- Fuel Pump
- Fuel-Proper Tank
- Mixture-Best Power

LANDING
- Flap Choice
- Adjust for X-Wind
- Short Final
- Adjust for X-Wind

GO AROUND
- Power-As Req
- Carb Heat-As Req
- Positive Climb Rate
- Flaps-Up

AFTER LANDING
- Flaps-UP
- Carb Heat-OFF
- Fuel Pump-OFF
- Strobe Lights-OFF
- Landing Light-OFF
- Pitot Heat-OFF
- Transponder-STBY

GUMPS
- Gas-Pump/Tanks
- Undercarriage-Flaps/Gear
- Mixture
- Propeller
- Seat Belts

Crusie Climb
- Oil Pressure-Check
- Minimum RPM
- Oil Pressure-Check
- Minimum RPM
- Oil Pressure-Check
- Minimum RPM

Pre-Landing
- Oil Pressure-Check
- Minimum RPM
- Oil Pressure-Check
- Minimum RPM

Security
- ELT-Verify Silent?
- Radio Master-OFF
- All Lights-OFF
- Mixture-Lean
- Mags-OFF
- Master/Alt-OFF
- Hobbs/Tach Time
- Secure Yoke
- Windows-Closed
- Sun Screen-ON
- Tie Down-Tied
- Baggage Door-Shut
- Cabin door-Closed
- Close Flight Plan
- Take Your Trash

GUMPS
- ELT-Verify Silent?
- Radio Master-OFF
- All Lights-OFF
- Mixture-Lean
- Mags-OFF
- Master/Alt-OFF
- Hobbs/Tach Time
- Secure Yoke
- Windows-Closed
- Sun Screen-ON
- Tie Down-Tied
- Baggage Door-Shut
- Cabin door-Closed
- Close Flight Plan
- Take Your Trash

Seat Belts
- Carb Heat-As Req
- Fuel Pump
- Fuel-Proper Tank
- Mixture-Best Power

Generic Emergency Checklist – Always Check Your Aircraft’s POH

1) Power Loss On Climb Out – No Restart
Maintain Aircraft Control/Best Glide __ kts at _________# wt

FIRST IF TIME PERMITS
- Mixture – Full Rich
- Fuel Selector – Check/Switch (Note Gauges)
- Fuel Pump – ON
- Carburetor Heat - ON (Also supplies alternate Air)

THEN IF IT DOES NOT RE-START
- Fuel Selector – OFF
- Master/Alternator and Magneto – OFF
- Mixture - Full Lean/Idle cutoff
- Seatbelts/Harness
- Unlatch Door
- Flaps – As Needed (Full flaps OK when field assured)
- Land slightly Tail Low
- Protect Body

2) Power Loss With Altitude – Restart a Possibility
Maintain Aircraft Control/Best Glide __ kts at _________# wt
- Mixture – Full Rich
- Fuel Selector – Check/Switch (Note Gauges)
- Fuel Pump – ON
- Carburetor Heat - ON (Also Supplies Alternate Air)
- Magneto – Check All
- Master/Alternator – ON
- Squawk 7700
- Declare Emergency (Tower, Approach control Unicom, 121.5)
- ELT – ON
- Note Wind Direction and Velocity
- Pick Landing site
- If time permits Troubleshoot
- Go to EMERGENCY CHECKLIST 1) ABOVE

4) Electrical Fire in Flight
All Electrical Devices and Master/Alternator – OFF (Magnetos ON)
- Cabin Heat and Air – OFF
- If Fire Out – Master on only if Critical (Vents – Open)
- Then One essential Electrical Device at a Time
- Reset Circuit Breakers Only if Critical – Land ASAP

5) Engine Fire In Flight
Throttle – Closed
- Mixture – Full Lean/Idle Cutoff
- Fuel Selector – OFF
- Master / Alternator – OFF
- Cabin Heat & AIR – OFF (Vents OPEN)
- Increase Airspeed to Extinguish – Land ASAP

6) Engine Fire During Start
Continue Cranking Engine
- If Start – Run a Few Seconds – Shutdown – Inspect
- If NO Start – Idle Mixture Cutoff & Fuel Selector
- Throttle Full Open
- Continue Cranking Engine a Few Seconds
- Master / Alternator & Magneto – OFF
- Evacuate / Fire Extinguisher

7) Icing
- Pilot Heat – ON
- Carburetor Heat – ON or as Required
- Deicing Equipment - ON
- Cabin Heat and Defrost – ON
- Strongly Consider 180° Turn
- Attain Higher or Lower Altitude
- Increase Engine Speed
- Flaps – Not Recommended for Landing
- Land Faster as Needed

8) Radio Out
- Check Radio Volume
- Check Circuit Breakers
- Recycle Alternator Switch
- If you were NOT in Radio Contact with Approach/Tower
 - Do NOT fly in Class B, C or D Airspace

Other Information
- Usable Fuel Onboard ________ gal
- Oil At least ______ Quarts
- Electrical ______ Volts – ___ Amp System
- Tire Pressure Nose Gear____ psi - Main Gear ____ psi

Light Gun Signals

<table>
<thead>
<tr>
<th>COLOR</th>
<th>ON GROUND</th>
<th>IN FLIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEADY GREEN</td>
<td>CLEARED FOR TAKEOFF</td>
<td>CLEARED TO LAND</td>
</tr>
<tr>
<td>FLASHING GREEN</td>
<td>CLEARED FOR TAXI</td>
<td>RETURN FOR LANDING</td>
</tr>
<tr>
<td>STEADY RED</td>
<td>STOP</td>
<td>YIELD TO OTHER AIRCRAFT, CONTINUE CIRCULATING</td>
</tr>
<tr>
<td>FLASHING RED</td>
<td>TAXI CLEAR OF RUNWAY</td>
<td>AIRPORT UNSAFE, DO NOT LAND</td>
</tr>
<tr>
<td>FLASHING WHITE</td>
<td>RETURN TO STARTING POINT</td>
<td>NOT APPLICABLE</td>
</tr>
<tr>
<td>ALTERNATING RED & GREEN</td>
<td>EXERCISE EXTREME CAUTION</td>
<td>EXERCISE EXTREME CAUTION</td>
</tr>
</tbody>
</table>

SHORT FIELD TAKOFF PROCEDURE
- Flaps ___ Rotate ___ kts Then ___ kts Until
- Over Obstacle Nose Down Flaps ___

CRUISE PERFORMANCE

Economy	Normal	Maximum
_______	_______	_______
kts	kts	kts
RPM	gph	%
____	____	____
55%	65%	75%

SOFT FIELD TAKEOFF
- Flaps ___ Rotate as Early as Possible Nose
- Down Flaps ___
<table>
<thead>
<tr>
<th>Airport/Check Point</th>
<th>ALT</th>
<th>TC</th>
<th>Temp</th>
<th>Wind From</th>
<th>WCA Knots</th>
<th>VAR + or - TH</th>
<th>MH + or - CH</th>
<th>DIST</th>
<th>TAS</th>
<th>GS</th>
<th>Elapsed Time</th>
<th>Fuel Rate</th>
<th>Fuel Used</th>
<th>Actual Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Totals

FREQUENCIES, SQUAWKS ETC.

<table>
<thead>
<tr>
<th>Departure Airport</th>
<th>Fourth Airport</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATIS</td>
<td>ATIS</td>
</tr>
<tr>
<td>Ground</td>
<td>Ground</td>
</tr>
<tr>
<td>Tower</td>
<td>Tower</td>
</tr>
<tr>
<td>Departure</td>
<td>Departure</td>
</tr>
<tr>
<td>CTAF</td>
<td>CTAF</td>
</tr>
<tr>
<td>UNICOM</td>
<td>UNICOM</td>
</tr>
<tr>
<td>Runway Length</td>
<td>Runway Length</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Airport</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ATIS</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>EMERGENCY</td>
</tr>
<tr>
<td>Tower</td>
<td></td>
</tr>
<tr>
<td>Departure</td>
<td>LOST COMUNICATIONS</td>
</tr>
<tr>
<td>CTAF</td>
<td>FLIGHT WATCH</td>
</tr>
<tr>
<td>UNICOM</td>
<td>FLIGHT SERVICE STATION (FSS) (or as published)</td>
</tr>
<tr>
<td>Runway Length</td>
<td>Runway Length</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Airport</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ATIS</td>
<td>AIR TO AIR</td>
</tr>
<tr>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>Tower</td>
<td></td>
</tr>
<tr>
<td>Departure</td>
<td></td>
</tr>
<tr>
<td>CTAF</td>
<td>Tallahassee Commercial Airport</td>
</tr>
<tr>
<td>UNICOM</td>
<td>Quincy Airport</td>
</tr>
<tr>
<td>Runway Length</td>
<td>Panacea Airport</td>
</tr>
</tbody>
</table>

IFR Departure Airport

<table>
<thead>
<tr>
<th>Approach</th>
<th>A</th>
<th>F</th>
<th>A</th>
<th>T</th>
<th>C</th>
<th>A</th>
<th>T</th>
</tr>
</thead>
</table>

IFR Land Short Airport

<table>
<thead>
<tr>
<th>Approach</th>
<th>A</th>
<th>F</th>
<th>A</th>
<th>T</th>
<th>C</th>
<th>A</th>
<th>T</th>
</tr>
</thead>
</table>

IFR Destination Airport

<table>
<thead>
<tr>
<th>Approach</th>
<th>A</th>
<th>F</th>
<th>A</th>
<th>T</th>
<th>C</th>
<th>A</th>
<th>T</th>
</tr>
</thead>
</table>

IFR Alternate Airport

<table>
<thead>
<tr>
<th>Approach</th>
<th>A</th>
<th>F</th>
<th>A</th>
<th>T</th>
<th>C</th>
<th>A</th>
<th>T</th>
</tr>
</thead>
</table>
Flight Planning

IFR / VFR / DVFR [Destination]
Aircraft Identification [Est Time Enroute]
Aircraft Type / Equipment [Remarks]
True Airspeed Kts [Fuel on Board]
Departure Point [Alternate Airport]
Departure Time [Name & Phone #]
Initial Altitude [# on Board]
Route [Aircraft Color]

1-800-WX-Brief—1-800-992-7433

Briefing: ______ Standard; ______ Abbreviated; ______ Outlook

Adverse Conditions—VFR Not Recommended

Synoptic Situation:

Current Departure Airport Weather:

Enroute Weather:

Destination Airport Weather (IFR-1 hour before-1 hour after-2000’ / 3sm):

IFR-Alternate Weather (900’-2sm or 800’-2sm):

PIREPS:

NOTAMS / FDC NOTAMS / Temporary Flight Restrictions (TFRs)

IFR-Clear Area:

<table>
<thead>
<tr>
<th>Winds</th>
<th>Location 1</th>
<th>Location 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aloft:</td>
<td>Direction</td>
<td>Speed</td>
</tr>
<tr>
<td>3000’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6000’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9000’</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

/X- No Transponder; /U- Transponder; /A-DME & Transponder; /G- GPS